Inhomogeneous Temperature Distribution Affecting the Cyclic Aging of Li-Ion Cells. Part II: Analysis and Correlation

Abstract

Temperature has a significant influence on the behavior of batteries and their lifetime. There are several studies in literature that investigate the aging behavior under electrical load, but are limited to homogeneous, constant temperatures. This article presents an approach to quantifying cyclic aging of lithium-ion cells that takes into account complex thermal boundary conditions. It not only considers different temperature levels but also spatial and transient temperature gradients that can occur despite-or even due to-the use of thermal management systems. Capacity fade and impedance rise are used as measured quantities for degradation and correlated with the temperature boundary conditions during the aging process. The concept and definition of an equivalent aging temperature (EAT) is introduced to relate the degradation caused by spatial and temporal temperature inhomogeneities to similar degradation caused by a homogeneous steady temperature during electrical cycling. The results show an increased degradation at both lower and higher temperatures, which can be very well described by two superimposed exponential functions. These correlations also apply to cells that are cycled under the influence of spatial temperature gradients, both steady and transient. Only cells that are exposed to transient, but spatially homogeneous temperature conditions show a significantly different aging behavior. The concluding result is a correlation between temperature and aging rate, which is expressed as degradation per equivalent full cycle (EFC). This enables both temperature-dependent modeling of the aging behavior and its prediction

    Similar works