(abridged) We investigate biases in cluster ages and [Fe/H] estimated from
the (V-K)-(V-I) diagram, arising from inconsistent Horizontal Branch
morphology, metal mixture, treatment of core convection between observed
clusters and the theoretical colour grid employed for age and metallicity
determinations. We also study the role played by statistical fluctuations of
the observed colours, caused by the low total mass of typical globulars.
Horizontal Branch morphology is potentially the largest source of uncertainty.
A single-age system harbouring a large fraction of clusters with an HB
morphology systematically bluer than the one accounted for in the theoretical
colour grid, can simulate a bimodal population with an age difference as large
as 8 Gyr. When only the redder clusters are considered, this uncertainty is
almost negligible, unless there is an extreme mass loss along the Red Giant
Branch phase. The metal mixture affects mainly the redder clusters; the effect
of colour fluctuations becomes negligible for the redder clusters, or when the
integrated Mv is brighter than -8.5 mag. The treatment of core convection is
relevant for ages below ~4 Gyr. The retrieved [Fe/H] distributions are overall
only mildly affected. Colour fluctuations and convective core extension have
the largest effect. When 1sigma photometric errors reach 0.10 mag, all biases
found in our analysis are erased, and bimodal age populations with age
differences of up to ~8 Gyr go undetected. The use of both (U-I)-(V-K) and
(V-I)-(V-K) diagrams may help disclosing the presence of blue HB stars
unaccounted for in the theoretical colour calibration.Comment: 20 pages, including 26 figures. A&A in pres