slides

Morphological evolution of z~1 galaxies from deep K-band AO imaging in the COSMOS deep field

Abstract

We present the results of an imaging programme of distant galaxies (z~0.8) at high spatial resolution (~0.1").We observed 7 fields of 1'*1' with the NACO Adaptive Optics system (VLT) in Ks (2.16um) band with typical V ~ 14 guide stars and 3h integration time per field. Observed fields are selected within the COSMOS survey area. High angular resolution K-band data have the advantage to probe old stellar populations in the rest-frame, enabling to determine galaxy morphological types unaffected by recent star formation, better linked to the underlying mass than classical optical morphology studies (HST). Adaptive optics on ground based telescopes is the only method today to obtain such high resolution in the K-band. In this paper we show that reliable results can be obtained and establish a first basis for larger observing programmes. We analyze the morphologies by means of B/D (Bulge/Disk) decomposition with GIM2D and CAS (Concentration-Asymmetry) estimators for 79 galaxies with magnitudes between Ks = 17-23 and classify them in three main morphological types (Late Type, Early Type and Irregulars). We obtain for the first time an estimate of the distribution of galaxy types at redshift z ~ 1 as measured from the near infrared at high spatial resolution. We show that galactic parameters (disk scale length, bulge effective radius and bulge fraction) can be estimated with a random error lower than 20% for the bulge fraction up to Ks = 19 (AB = 21) and that classification into the three main morphological types can be done up to Ks = 20 (AB = 22) with at least 70% of correct identifications. We used the known photometric redshifts to obtain a redshift distribution over 2 redshift bins (z < 0.8, 0.8 < z < 1.5) for each morphological type.Comment: 19 pages, 19 figures, 5 tables, Accepted for publication in A&A, typos corrected, referee's suggestions added, figure 3 has been strongly degrade

    Similar works