Design and optimisation of scientific programs in a categorical language

Abstract

This thesis presents an investigation into the use of advanced computer languages for scientific computing, an examination of performance issues that arise from using such languages for such a task, and a step toward achieving portable performance from compilers by attacking these problems in a way that compensates for the complexity of and differences between modern computer architectures. The language employed is Aldor, a functional language from computer algebra, and the scientific computing area is a subset of the family of iterative linear equation solvers applied to sparse systems. The linear equation solvers that are considered have much common structure, and this is factored out and represented explicitly in the lan-guage as a framework, by means of categories and domains. The flexibility introduced by decomposing the algorithms and the objects they act on into separate modules has a strong performance impact due to its negative effect on temporal locality. This necessi-tates breaking the barriers between modules to perform cross-component optimisation. In this instance the task reduces to one of collective loop fusion and array contrac

    Similar works