Algorithmic analysis of parity games

Abstract

Parity games are discrete infinite games of two players with complete information. There are two main motivations to study parity games. Firstly the problem of deciding a winner in a parity game is polynomially equivalent to the modal µ-calculus model checking, and therefore is very important in the field of computer aided verification. Secondly it is the intriguing status of parity games from the point of view of complexity theory. Solving parity games is one of the few natural problems in the class NP∩co-NP (even in UP∩co-UP), and there is no known polynomial time algorithm, despite the substantial amount of effort to find one. In this thesis we add to the body of work on parity games. We start by presenting parity games and explaining the concepts behind them, giving a survey of known algorithms, and show their relationship to other problems. In the second part of the thesis we want to answer the following question: Are there classes of graphs on which we can solve parity games in polyno

    Similar works