Approximate model composition for explanation generation

Abstract

This thesis presents a framework for the formulation of knowledge models to sup¬ port the generation of explanations for engineering systems that are represented by the resulting models. Such models are automatically assembled from instantiated generic component descriptions, known as modelfragments. The model fragments are of suffi¬ cient detail that generally satisfies the requirements of information content as identified by the user asking for explanations. Through a combination of fuzzy logic based evidence preparation, which exploits the history of prior user preferences, and an approximate reasoning inference engine, with a Bayesian evidence propagation mechanism, different uncertainty sources can be han¬ dled. Model fragments, each representing structural or behavioural aspects of a com¬ ponent of the domain system of interest, are organised in a library. Those fragments that represent the same domain system component, albeit with different representation detail, form parts of the same assumption class in the library. Selected fragments are assembled to form an overall system model, prior to extraction of any textual infor¬ mation upon which to base the explanations. The thesis proposes and examines the techniques that support the fragment selection mechanism and the assembly of these fragments into models. In particular, a Bayesian network-based model fragment selection mechanism is de¬ scribed that forms the core of the work. The network structure is manually determined prior to any inference, based on schematic information regarding the connectivity of the components present in the domain system under consideration. The elicitation of network probabilities, on the other hand is completely automated using probability elicitation heuristics. These heuristics aim to provide the information required to select fragments which are maximally compatible with the given evidence of the fragments preferred by the user. Given such initial evidence, an existing evidence propagation algorithm is employed. The preparation of the evidence for the selection of certain fragments, based on user preference, is performed by a fuzzy reasoning evidence fab¬ rication engine. This engine uses a set of fuzzy rules and standard fuzzy reasoning mechanisms, attempting to guess the information needs of the user and suggesting the selection of fragments of sufficient detail to satisfy such needs. Once the evidence is propagated, a single fragment is selected for each of the domain system compo¬ nents and hence, the final model of the entire system is constructed. Finally, a highly configurable XML-based mechanism is employed to extract explanation content from the newly formulated model and to structure the explanatory sentences for the final explanation that will be communicated to the user. The framework is illustratively applied to a number of domain systems and is compared qualitatively to existing compositional modelling methodologies. A further empirical assessment of the performance of the evidence propagation algorithm is carried out to determine its performance limits. Performance is measured against the number of frag¬ ments that represent each of the components of a large domain system, and the amount of connectivity permitted in the Bayesian network between the nodes that stand for the selection or rejection of these fragments. Based on this assessment recommenda¬ tions are made as to how the framework may be optimised to cope with real world applications

    Similar works