Improved photometric redshifts with colour-constrained galaxy templates for future wide-area surveys

Abstract

Cosmology and galaxy evolution studies with LSST, Euclid, and Roman, will require accurate redshifts for the detected galaxies. In this study, we present improved photometric redshift estimates for galaxies using a template library that populates three-colour space and is constrained by HST/CANDELS photometry. For the training sample, we use a sample of galaxies having photometric redshifts that allows us to train on a large, unbiased galaxy sample having deep, unconfused photometry at optical-to-mid infrared wavelengths. Galaxies in the training sample are assigned to cubes in 3D colour space, V − H, I − J, and z − H. We then derive the best-fitting spectral energy distributions of the training sample at the fixed CANDELS median photometric redshifts to construct the new template library for each individual colour cube (i.e. colour-cube-based template library). We derive photometric redshifts (photo-z) of our target galaxies using our new colour-cube-based template library and with photometry in only a limited set of bands, as expected for the aforementioned surveys. As a result, our method yields σ_(NMAD) of 0.026 and an outlier fraction of 6 per cent using only photometry in the LSST and Euclid/Roman bands. This is an improvement of ∼10 per cent on σ_(NMAD) and a reduction in outlier fraction of ∼13 per cent compared to other techniques. In particular, we improve the photo-z precision by about 30 per cent at 2 < z < 3. We also assess photo-z improvements by including K or mid-infrared bands to the ugrizYJH photometry. Our colour-cube-based template library is a powerful tool to constrain photometric redshifts for future large surveys

    Similar works