The growth in mobile data traffic is rapidly increasing in an unsustainable direction
given the radio frequency (RF) spectrum limits. Visible light communication (VLC)
offers a lucrative solution based on an alternative license-free frequency band that is safe
to use and inexpensive to utilize. Improving the spectral and energy efficiency of intensity
modulation and direct detection (IM/DD) systems is still an on-going challenge in
VLC. The energy efficiency of inherently unipolar modulation techniques such as pulse-amplitude
modulation discrete multitone modulation (PAM-DMT) and asymmetrically
clipped optical orthogonal frequency division multiplexing (ACO-OFDM) degrades at
high spectral efficiency. Two novel superposition modulation techniques are proposed
in this thesis based on PAM-DMT and ACO-OFDM. In addition, a practical solution
based on the computationally efficient augmented spectral efficiency discrete multi-tone
(ASE-DMT) is proposed. The system performance of the proposed superposition
modulation techniques offers significant electrical and optical power savings with up
to 8 dB in the electrical signal-to-noise ratio (SNR) when compared with DC-biased
optical orthogonal frequency division multiplexing (DCO-OFDM). The theoretical bit
error ratio (BER) performance bounds for all of the proposed modulation techniques
are in agreement with the Monte-Carlo simulation results. The proposed superposition
modulation techniques are promising candidates for spectrum and energy efficient
IM/DD systems.
Two experimental studies are presented for a VLC system based on DCO-OFDM with
adaptive bit and energy loading. Micrometer-sized Gallium Nitride light emitting
diode (m-LED) and light amplification by stimulated emission of radiation diode (LD)
are used in these studies due to their high modulation bandwidth. Record data rates are
achieved with a BER below the forward error correction (FEC) threshold at 7.91 Gb/s
using the violet m-LED and at 15 Gb/s using the blue LD. These results highlight
the potential of VLC systems in practical high speed communication solutions. An
additional experimental study is demonstrated for the proposed superposition modulation
techniques based on ASE-DMT. The experimentally achieved results confirm the
theoretical and simulation based performance predictions of ASE-DMT. A significant
gain of up to 17.33 dB in SNR is demonstrated at a low direct current (DC) bias.
Finally, the perception that VLC systems cannot work under the presence of sunlight is
addressed in this thesis. A complete framework is presented to evaluate the performance
of VLC systems in the presence of solar irradiance at any given location and time. The
effect of sunlight is investigated in terms of the degradations in SNR, data rate and
BER. A reliable high speed communication system is achieved under the sunlight
effect. An optical bandpass blue filter is shown to compensate for half of the reduced
data rate in the presence of sunlight. This thesis demonstrates data rates above 1 Gb/s
for a practical VLC link under strong solar illuminance measured at 50350 lux in clear
weather conditions