Sparsity driven ground moving target indication in synthetic aperture radar

Abstract

Synthetic aperture radar (SAR) was first invented in the early 1950s as the remote surveillance instruments to produce high resolution 2D images of the illuminated scene with weather-independent, day-or-night performance. Compared to the Real Aperture Radar (RAR), SAR is synthesising a large virtual aperture by moving a small antenna along the platform path. Typical SAR imaging systems are designed with the basic assumption of a static scene, and moving targets are widely known to induce displacements and defocusing in the formed images. While the capabilities of detection, states estimation and imaging for moving targets with SAR are highly desired in both civilian and military applications, the Ground Moving Target Indication (GMTI) techniques can be integrated into SAR systems to realise these challenging missions. The state-of-the- art SAR-based GMTI is often associated with multi-channel systems to improve the detection capabilities compared to the single-channel ones. Motivated by the fact that the SAR imaging is essentially solving an optimisation problem, we investigate the practicality to reformulate the GMTI process into the optimisation form. Furthermore, the moving target sparsities and underlying similarities between the conventional GMTI processing and sparse reconstruction algorithms drive us to consider the compressed sensing theory in SAR/GMTI applications. This thesis aims to establish an end-to-end SAR/GMTI processing framework regularised by target sparsities based on multi-channel SAR models. We have explained the mathematical model of the SAR system and its key properties in details. The common GMTI mechanism and basics of the compressed sensing theory are also introduced in this thesis. The practical implementation of the proposed framework is provided in this work. The developed model is capable of realising various SAR/GMTI tasks including SAR image formation, moving target detection, target state estimation and moving target imaging. We also consider two essential components, i.e. the data pre-processing and elevation map, in this work. The effectiveness of the proposed framework is demonstrated through both simulations and real data. Given that our focus in this thesis is on the development of a complete sparsity-aided SAR/GMTI framework, the contributions of this thesis can be summarised as follows. First, the effects of SAR channel balancing techniques and elevation information in SAR/GMTI applications are analysed in details. We have adapted these essential components to the developed framework for data pre-processing, system specification estimation and better SAR/GMTI accuracies. Although the purpose is on enhancing the proposed sparsity-based SAR/GMTI framework, the exploitation of the DEM in other SAR/GMTI algorithms may be of independent interest. Secondly, we have designed a novel sparsity-aided framework which integrates the SAR/GMTI missions, i.e. SAR imaging, moving target and background decomposition, and target state estimation, into optimisation problems. A practical implementation of the proposed framework with a two stage process and theoretically/experimentally proven algorithms are proposed in this work. The key novelty on utilising optimisations and target sparsities is explained in details. Finally, a practical algorithm for moving target imaging and state estimation is developed to accurately estimate the full target parameters and form target images with relocation and refocusing capabilities. Compared to the previous processing steps for practical applications, the designed algorithm consistently relies on the exploitation of target sparsities which forms the final processing stage of the whole pipeline. All the developed components contribute coherently to establish a complete sparsity driven SAR/GMTI processing framework

    Similar works