This paper is about interpreting human communication in meetings using audio, video and other signals. Automatic meeting recognition and understanding is extremely challenging, since communication in a meeting is spontaneous and conversational, and involves multiple speakers and multiple modalities. This leads to a number of significant research problems in signal processing, in speech recognition, and in discourse interpretation, taking account of both individual and group behaviours. Addressing these problems requires an interdisciplinary effort. In this paper, I discuss the capture and annotation of multimodal meeting recordings - resulting in the AMI meeting corpus - and how we have built on this to develop techniques and applications for the recognition and interpretation of meetings