research

Dark matter clustering: a simple renormalization group approach

Abstract

I compute a renormalization group (RG) improvement to the standard beyond-linear-order Eulerian perturbation theory (PT) calculation of the power spectrum of large-scale density fluctuations in the Universe. At z=0, for a power spectrum matching current observations, lowest order RGPT appears to be as accurate as one can test using existing numerical simulation-calibrated fitting formulas out to at least k~=0.3 h/Mpc; although inaccuracy is guaranteed at some level by approximations in the calculation (which can be improved in the future). In contrast, standard PT breaks down virtually as soon as beyond-linear corrections become non-negligible, on scales even larger than k=0.1 h/Mpc. This extension in range of validity could substantially enhance the usefulness of PT for interpreting baryonic acoustic oscillation surveys aimed at probing dark energy, for example. I show that the predicted power spectrum converges at high k to a power law with index given by the fixed-point solution of the RG equation. I discuss many possible future directions for this line of work. The basic calculation of this paper should be easily understandable without any prior knowledge of RG methods, while a rich background of mathematical physics literature exists for the interested reader.Comment: much expanded explanation of basic calculatio

    Similar works

    Available Versions

    Last time updated on 02/01/2020