research

The effect of planetary migration on the corotation resonance

Abstract

The migration of a planet through a gaseous disc causes the locations of their resonant interactions to drift and can alter the torques exerted between the planet and the disc. We analyse the time-dependent dynamics of a non-coorbital corotation resonance under these circumstances. The ratio of the resonant torque in a steady state to the value given by Goldreich & Tremaine (1979) depends essentially on two dimensionless quantities: a dimensionless turbulent diffusion time-scale and a dimensionless radial drift speed. When the drift speed is comparable to the libration speed and the viscosity is small, the torque can become much larger than the unsaturated value in the absence of migration, but is still proportional to the large-scale vortensity gradient in the disc. Fluid that is trapped in the resonance and drifts with it acquires a vortensity anomaly relative to its surroundings. If the anomaly is limited by viscous diffusion in a steady state, the resulting torque is inversely proportional to the viscosity, although a long time may be required to achieve this state. A further, viscosity-independent, contribution to the torque comes from fluid that streams through the resonant region. In other cases, torque oscillations occur before the steady value is achieved. We discuss the significance of these results for the evolution of eccentricity in protoplanetary systems. We also describe the possible application of these findings to the coorbital region and the concept of runaway (or type III) migration. [Abridged]Comment: 15 pages, 6 figures, to be published in MNRA

    Similar works

    Available Versions

    Last time updated on 01/04/2019