We perform binary population synthesis calculations to investigate the
incidence of low-mass X-ray binaries and their birth rate in the Galaxy. We use
a binary evolution algorithm that models all the relevant processes including
tidal circularization and synchronization. Parameters in the evolution
algorithm that are uncertain and may affect X-ray binary formation are allowed
to vary during the investigation. We agree with previous studies that under
standard assumptions of binary evolution the formation rate and number of
black-hole low-mass X-ray binaries predicted by the model are more than an
order of magnitude less than what is indicated by observations. We find that
the common-envelope process cannot be manipulated to produce significant
numbers of black-hole low-mass X-ray binaries. However, by simply reducing the
mass-loss rate from helium stars adopted in the standard model, to a rate that
agrees with the latest data, we produce a good match to the observations.
Including low-mass X-ray binaries that evolve from intermediate-mass systems
also leads to favourable results. We stress that constraints on the X-ray
binary population provided by observations are used here merely as a guide as
surveys suffer from incompleteness and much uncertainty is involved in the
interpretation of results.Comment: 17 pages and 9 figures; accepted by MNRA