Exact Algorithms for the Graph Coloring Problem

Abstract

The graph coloring problem is the problem of partitioning the vertices of a graph into the smallest possible set of independent sets. Since it is a well-known NP-Hard problem, it is of great interest of the computer science finding results over exact algorithms that solve it. The main algorithms of this kind, though, are scattered through the literature. In this paper, we group and contextualize some of these algorithms, which are based in Dynamic Programming, Branch-and-Bound and Integer Linear Programming. The algorithms for the first group are based in the work of Lawler, which searches maximal independent sets on each subset of vertices of a graph as the base of his algorithm. In the second group, the algorithms are based in the work of Brelaz, which adapted the DSATUR procedure to an exact version, and in the work of Zykov, which introduced the definition of Zykov trees. The third group contains the algorithms based in the work of Mehrotra and Trick, which uses the Column Generation method

    Similar works