The final publication is available at Springer via http://dx.doi.org/10.1007/s10543-013-0443-3In this paper we introduce higher order numerical methods for solving fractional differential equations. We use two approaches to this problem. The first approach is based on a direct discretisation of the fractional differential operator: we obtain a numerical method for solving a linear fractional differential equation with order 0 0. The order of convergence of the numerical method is O(h^3) for α ≥ 1 and O(h^(1+2α)) for 0 < α ≤ 1 for sufficiently smooth solutions. Numerical examples are given to show that the numerical results are consistent with the theoretical results