We determine the shape, multiplicity, size, and radial structure of
superclusters in the LambdaCDM concordance cosmology from z = 0 to z = 2.
Superclusters are defined as clusters of clusters in our large-scale
cosmological simulation. We find that superclusters are triaxial in shape; many
have flattened since early times to become nearly two-dimensional structures at
present, with a small fraction of filamentary systems. The size and
multiplicity functions are presented at different redshifts. Supercluster sizes
extend to scales of ~ 100 - 200 Mpc/h. The supercluster multiplicity (richness)
increases linearly with supercluster size. The density profile in superclusters
is approximately isothermal (~ R^{-2}) and steepens on larger scales. These
results can be used as a new test of the current cosmology when compared with
upcoming observations of large-scale surveys.Comment: 33 pages, 15 figures, accepted to ApJ; minor content changes, some
figures removed to shorten pape