This paper explores resonance-driven secular evolution between a bar and
dark-matter halo using N-body simulations. We make direct comparisons to our
analytic theory (Weinberg & Katz 2005) to demonstrate the great difficulty that
an N-body simulation has representing these dynamics for realistic astronomical
interactions. In a dark-matter halo, the bar's angular momentum is coupled to
the central density cusp (if present) by the Inner Lindblad Resonance. Owing to
this angular momentum transfer and self-consistent re-equilibration, strong
realistic bars WILL modify the cusp profile, lowering the central densities
within about 30% of the bar radius in a few bar orbits. Past results to the
contrary (Sellwood 2006, McMillan & Dehnen 2005) may be the result of weak bars
or numerical artifacts. The magnitude depends on many factors and we illustrate
the sensitivity of the response to the dark-matter profile, the bar shape and
mass, and the galaxy's evolutionary history. For example, if the bar length is
comparable to the size of a central dark-matter core, the bar may exchange
angular momentum without changing its pattern speed significantly. We emphasise
that this apparently simple example of secular evolution is remarkably subtle
in detail and conclude that an N-body exploration of any astronomical scenario
requires a deep investigation into the underlying dynamical mechanisms for that
particular problem to set the necessary requirements for the simulation
parameters and method (e.g. particle number and Poisson solver). Simply put,
N-body simulations do not divinely reveal truth and hence their results are not
infallible. They are unlikely to provide useful insight on their own,
particularly for the study of even more complex secular processes such as the
production of pseudo-bulges and disk heating.Comment: 23 pages, 18 figures, submitted to Monthly Notices. For paper with
figures at full resolution:
http://www.astro.umass.edu/~weinberg/weinberg_katz_2.ps.g