The Component Mode Tuning (CMT) method. A strategy adapted to the design of assemblies applied to industrial brake squeal

Abstract

Numerical prototyping is widely used in industrial design processes, allowing optimization and limiting validation costs through experimental testing. Industrial applications nowadays focus on the simulation of complex component assemblies that are generally mass produced. Coupling properties thus have to be modelled, updated and accounted for variability. For squeal applications, simulations still fail at robustly producing exploitable results due to the systems complexity, while experimentations are limited for diagnostic and design improvement. This paper presents a new application of the Component Mode Tuning, an efficient model reduction method adapted to quick system level reanalysis as function of component free modes, to study the effect of coupling. The impact of component coupling stiffness and coupling surface topology is thus assessed on a drum brake subassembly which design is sensitive to squeal. It is shown that significant system differences can come from coupling surface variations with patterns close to experimental observations. This emphases the need for refined analyses to control coupling in the perspective of robust modelling

    Similar works