slides

The First Spatially Resolved Mid-IR Spectra of NGC 1068 Obtained at Diffraction-limited Resolution with LWS at Keck I Telescope

Abstract

We present spatially resolved mid-IR spectra of NGC 1068 with a diffraction-limited resolution of 0.25\arcsec using the Long Wavelength Spectrometer (LWS) at the Keck I telescope. The mid-infrared image of NGC 1068 is extended along the N-S direction. Previous imaging studies have shown the extended regions are located inside the ionization cones indicating that the mid-infrared emission arises perhaps from the inner regions of the narrow-line clouds instead of the proposed dusty torus itself. The spatially resolved mid-IR spectra were obtained at two different slit position angles, +8.0 and -13.0 degrees across the elongated regions in the mid-IR. From these spectra, we found only weak silicate absorption toward the northern extended regions but strong in the nucleus and the southern extended regions. This is consistent with a model of a slightly inclined cold obscuring torus which covers much of the southern regions but is behind the northern extension. While a detailed analysis of the spectra requires a radiative transfer model, the lack of silicate emission from the northern extended regions prompts us to consider a dual dust population model as one of the possible explanations in which a different dust population exists in the ionization cones compared to that in the dusty torus. Dust inside the ionization cones may lack small silicate grains giving rise to only a featureless continuum in the northern extended regions while dust in the dusty torus has plenty of small silicate grains to produce the strong silicate absorption lines towards the nucleus and the southern extended regions.Comment: Accepted to Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019