research

Searching For Integrated Sachs-Wolfe Effect Beyond Temperature Anisotropies: CMB E-mode Polarization-Galaxy Cross Correlation

Abstract

The cross-correlation between cosmic microwave background (CMB) temperature anisotropies and the large scale structure (LSS) traced by the galaxy distribution, or sources at different wavelengths, is now well known. This correlation results from the integrated Sachs-Wolfe (ISW) effect in CMB anisotropies generated at late times due to the dark energy component of the Universe. In a reionized universe, the ISW quadrupole rescatters and contributes to the large-scale polarization signal. Thus, in principle, the large-scale polarization bump in the E-mode should also be correlated with the galaxy distribution. Unlike CMB temperature-LSS correlation that peaks for tracers at low redshifts this correlation peaks mostly at redshifts between 1 and 3. Under certain conditions, mostly involving a low optical depth to reionization, if the Universe reionized at a redshift around 6, the cross polarization-source signal is marginally detectable, though challenging as it requires all-sky maps of the large scale structure at redshifts between 1 and 3. If the Universe reionized at a redshift higher than 10, it is unlikely that this correlation will be detectable even with no instrumental noise all-sky maps. While our estimates do not guarantee a detection unknown physics related to the dark energy as well as still uncertain issues related to the large angular scale CMB and polarization anisotropies may motivate attempts to measure this correlation using upcoming CMB polarization E-mode maps.Comment: 13 pages; 3 figure panels, JCAP submitte

    Similar works