Formally Verified Simulations of State-Rich Processes using Interaction Trees in Isabelle/HOL

Abstract

Simulation and formal verification are important complementary techniques necessary in high assurance model-based systems development. In order to support coherent results, it is necessary to provide unifying semantics and automation for both activities. In this paper we apply Interaction Trees in Isabelle/HOL to produce a verification and simulation framework for state-rich process languages. We develop the core theory and verification techniques for Interaction Trees, use them to give a semantics to the CSP and Circus languages, and formally link our new semantics with the failures-divergences semantic model. We also show how the Isabelle code generator can be used to generate verified executable simulations for reactive and concurrent programs

    Similar works