research

Morphology and Growth of Methyl Stearate as a Function of Crystallization Environment

Abstract

In situ studies of methyl stearate growing from supersaturated n-dodecane, kerosene, and toluene solutions reveal strong evidence that solvent choice influences the crystal morphology and crystal growth kinetics. Crystals with similar habit are observed in all solvents, with the exception of lower supersaturations in kerosene, where a less symmetric morphology was observed. BFDH analysis based on the monoclinic C2 crystal structure of methyl stearate yielded the morphological indexation to be (110), (1–10), (−110), and (−1–10) for the dominant observed habit and (110) (1–10) (−1–10) (−240) (−3–10) for the less symmetric habit observed in kerosene solvent. Measurements of the growth rate for the (110) and (1–10) faces are similar for all solutions ranging from 0.02 to 1.13 μm/s, for significantly lower values of supersaturation in the case of toluene. The tendency of the growth rate dependence on σ was consistent with the Burton-Cabrera-Frank (BCF) growth mechanism in n-dodecane, the Birth and Spread (B&S) mechanism in kerosene and diffusion controlled in toluene solvent

    Similar works