We use direct-summation N-body integrations to follow the evolution of binary
black holes at the centers of galaxy models with large, constant-density cores.
Particle numbers as large as 400K are considered. The results are compared with
the predictions of loss-cone theory, under the assumption that the supply of
stars to the binary is limited by the rate at which they can be scattered into
the binary's influence sphere by gravitational encounters. The agreement
between theory and simulation is quite good; in particular, we are able to
quantitatively explain the observed dependence of binary hardening rate on N.
We do not verify the recent claim of Chatterjee, Hernquist & Loeb (2003) that
the hardening rate of the binary stabilizes when N exceeds a particular value,
or that Brownian wandering of the binary has a significant effect on its
evolution. When scaled to real galaxies, our results suggest that massive black
hole binaries in gas-poor nuclei would be unlikely to reach gravitational-wave
coalescence in a Hubble time.Comment: 13 pages, 8 figure