Pupil-mapping is a technique whereby a uniformly-illuminated input pupil,
such as from starlight, can be mapped into a non-uniformly illuminated exit
pupil, such that the image formed from this pupil will have suppressed
sidelobes, many orders of magnitude weaker than classical Airy ring
intensities. Pupil mapping is therefore a candidate technique for coronagraphic
imaging of extrasolar planets around nearby stars. Unlike most other
high-contrast imaging techniques, pupil mapping is lossless and preserves the
full angular resolution of the collecting telescope. So, it could possibly give
the highest signal-to-noise ratio of any proposed single-telescope system for
detecting extrasolar planets. Prior analyses based on pupil-to-pupil
ray-tracing indicate that a planet fainter than 10^{-10} times its parent star,
and as close as about 2 lambda/D, should be detectable. In this paper, we
describe the results of careful diffraction analysis of pupil mapping systems.
These results reveal a serious unresolved issue. Namely, high-contrast pupil
mappings distribute light from very near the edge of the first pupil to a broad
area of the second pupil and this dramatically amplifies diffraction-based edge
effects resulting in a limiting attainable contrast of about 10^{-5}. We hope
that by identifying this problem others will provide a solution.Comment: 23 pages, 13 figures, also posted to
http://www.orfe.princeton.edu/~rvdb/tex/piaaFresnel/ms.pd