Secure and Efficient Delegation of Elliptic-Curve Pairing

Abstract

Many public-key cryptosystems and, more generally, cryp- tographic protocols, use pairings as important primitive operations. To expand the applicability of these solutions to computationally weaker devices, it has been advocated that a computationally weaker client del- egates such primitive operations to a computationally stronger server. Important requirements for such delegation protocols include privacy of the client's pairing inputs and security of the client's output, in the sense of detecting, except for very small probability, any malicious server's at- tempt to convince the client of an incorrect pairing result. In this paper we show that the computation of bilinear pairings in all known pairing-based cryptographic protocols can be eciently, privately and securely delegated to a single, possibly malicious, server. Our tech- niques provides eciency improvements over past work in all input sce- narios, regardless on whether inputs are available to the parties in an oine phase or only in the online phase, and on whether they are public or have privacy requirements. The client's online runtime improvement is, for some of our protocols almost 1 order of magnitude, no matter which practical elliptic curve, among recently recommended ones, is used for the pairing realization

    Similar works