A minimum-dissipation time-integration strategy for large-eddy simulation of incompressible turbulent flows

Abstract

Adaptive time stepping can significantly enhance the accuracy and the efficiency of computational methods. In this work, a time-integration strategy with adaptive time step control is proposed for large-eddy simulation of turbulent flows. The algorithm is based on Runge-Kutta methods and consists in adjusting the time-step size dynamically to ensure that the numerical dissipation rate due to the temporal scheme is smaller than the molecular and subgrid-scale ones within a desired tolerance. The effectiveness of the method, as compared to standard CFL-like criteria, is assessed by large-eddy simulations of the three-dimensional Taylor-Green Vortex

    Similar works