Oxygen isotope ratios in tree rings (δ18OTR) from northern Bolivia record local precipitation δ18O and correlate strongly with Amazon basin-wide rainfall. While this is encouraging evidence that δ18OTR can be used for palaeoclimate reconstructions, it remains unclear whether variation in δ18OTR is truly driven by within-basin processes, thus recording Amazon climate directly, or if the isotope signal may already be imprinted on incoming vapour, perhaps reflecting a pan-tropical climate signal. We use atmospheric back-trajectories combined with satellite observations of precipitation, together with water vapour transport analysis to show that δ18OTR in Bolivia are indeed controlled by basin-intrinsic processes, with rainout over the basin the most important factor. Furthermore, interannual variation in basin-wide precipitation and atmospheric circulation are both shown to affect δ18OTR. These findings suggest δ18OTR can be reliably used to reconstruct Amazon precipitation, and have implications for the interpretation of other palaeoproxy records from the Amazon basin