Dairy Cattle Genetics by Environment Interaction Mismatch Contributes to Poor Mitigation and Adaptation of Grazing Systems to Climate Change Actions in the Peruvian High Andes: A Review

Abstract

The high Andes of Peru includes fragile ecosystems. Nevertheless, it plays important ecosystem functions (e.g., biodiversity, water supply for the lowlands, CO2 sinks in soil, etc). More than 80% of the livestock population of Peru is farmed in this area, supporting the livelihood of approximately 1’400,000 poor families, who are vulnerable to climate change (CC). Climate change in the high Andes is occurring at accelerated rates, compared to lowlands regions. Prevalent factors in the high Andes, such as hypoxia, high UV radiation, climatic extremes, large variation between maximum and minimum temperatures, seasonality in rainfall (determining highly seasonal forage growth) and CC, not only increase the feed and water needs of animals, but also affect animal production, reproduction, rumen function and welfare, making them more vulnerable to CC. During the last three decades, livestock farming in the high Andes has undergone transformation. The farming of camelids and creole species has been almost replaced by smallholder dairying, which have a higher environmental footprint. Institutions promoting dairying neglect the fitness requirement for the animal genetics to perform in such environments. Recent work of the New Zealand Peru Dairy Support Project (NZPDSP; 2016‒2020) demonstrated that rapid and significant improvements in animal productivity and profitability of dairying can be achieved by promoting adoption of simple and low-cost husbandry practices. Nevertheless, further improvements are constrained by the unfitness of the current animal genetics. Here, based on a literature review and experience from the NZPDSP, we propose a search for dairy cattle genetics that contributes to mitigation and adaptation to CC, while enhancing the livelihoods of the poor

    Similar works