H₂ yield and purity from sorption enhanced steam reforming (SE-SR) are determined by temperature, S:C ratio in use, and feed gas composition in hydrocarbons, N₂ and CO₂. Gases with high hydrocarbons composition had the highest H₂ yield and purity. The magnitude of sorption enhancement effects compared to conventional steam reforming (C-SR), i.e. increases in H₂ yield and purity, and drop in CH₄ yield were remarkably insensitive to alkane (C1-C3) and CO₂ content (0.1-10 vol%), with only N₂ content (0.4-70 vol%) having a minor effect. Although the presence of inert (N₂) decreases the partial pressure of the reactants which is beneficial in steam reforming, high inert contents increase the energetic cost of operating the reforming plants. The aim of the study is to investigate and demonstrate the effect of actual shale gas composition in the SE-SR process, with varied hydrocarbon fractions, CO₂ and N₂ in the feedstock