Uncertainties in numerical predictions of weather and climate are often linked to the representation of unresolved processes that act relatively quickly compared to the resolved general circulation. These processes include turbulence, convection, clouds, and radiation. Single-column model (SCM) simulation of idealized cases and the subsequent evaluation against large-eddy simulation (LES) results has become an often used and relied on method to obtain insight at process level into the behavior of such parameterization schemes; benefits of SCM simulation are the enhanced model transparency and the high computational efficiency. Although this approach has achieved demonstrable success, some shortcomings have been identified; among these, i) the statistical significance and relevance of single idealized case studies might be questioned and ii) the use of observational datasets has been relatively limited. A recently initiated project named the Royal Netherlands Meteorological Institute (KNMI) Parameterization Testbed (KPT) is part of a general move toward a more statistically significant process-level evaluation, with the purpose of optimizing the identification of problems in general circulation models that are related to parameterization schemes. The main strategy of KPT is to apply continuous long-term SCM simulation and LES at various permanent meteorological sites, in combination with comprehensive evaluation against observations at multiple time scales. We argue that this strategy enables the reproduction of typical long-term mean behavior of fast physics in large-scale models, but it still preserves the benefits of single-case studies (such as model transparency). This facilitates the tracing and understanding of errors in parameterization schemes, which should eventually lead to a reduction of related uncertainties in numerical predictions of weather and climate