research

Self-repairing mobile robotic car using astrocyte-neuron networks

Abstract

A self-repairing robot utilising a spiking astrocyte-neuron network is presented in this paper. It uses the output spike frequency of neurons to control the motor speed and robot activation. A software model of the astrocyte-neuron network previously demonstrated self-detection of faults and its self-repairing capability. In this paper the application demonstrator of mobile robotics is employed to evaluate the fault-tolerant capabilities of the astrocyte-neuron network when implemented in a hardware-based robotic car system. Results demonstrated that when 20% or less synapses associated with a neuron are faulty, the robot car can maintain system performance and complete the task of forward motion correctly. If 80% synapses are faulty, the system performance shows a marginal degradation, however this degradation is much smaller than that of conventional fault-tolerant techniques under the same levels of faults. This is the first time that astrocyte cells merged within spiking neurons demonstrates a self-repairing capabilities in the hardware system for a real application

    Similar works