Abstract

The Tully-Fisher relationship (TFR) has been shown to have a relatively small observed scatter of ~ +/-0.35 mag implying an intrinsic scatter < +/-0.30 mag. However, when the TFR is calibrated from distances derived from the Hubble relation for field galaxies scatter is consistently found to be +/-0.64 to +/-0.84 mag. This significantly larger scatter requires that intrinsic TFR scatter is actually much larger than +/-0.30 mag, that field galaxies have an intrinsic TFR scatter much larger than cluster spirals, or that field galaxies have a velocity dispersion relative to the Hubble flow in excess of 1000 km s-1. Each of these potential explanations faces difficulties contradicted by available data and the results of previous studies. An alternative explanation is that the measured redshifts of galaxies are composed of a cosmological redshift component predicted from the value of the Hubble Constant and a superimposed intrinsic redshift component previously identified in other studies. This intrinsic redshift component may exceed 5000 km s-1 in individual galaxies. In this alternative scenario a possible value for the Hubble Constant is 55-60 km s-1 Mpc-1.Comment: 15 pages, Astrophysics&Space Science - Accepted for publicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 31/03/2019