Simulation of material consequences induced by fsw for a trigonal pin

Abstract

The numerical simulation of Friction Stir Welding processes involves the coupling of a solid mechanics approach under large strains and large strain rates and heat transfer. The eulerian formalism leads to specially efficient finite element simulations of the matter flow under steady conditions. But with such a formulation, the calculation of the consequences induced by the stirring on the material (stirred state, microstructure, etc.) requires the coupling of advection equations for integrating the associated state variables. In this paper, a moving mesh strategy is proposed for the numerical simulation of Friction Stir Welding and material consequences, for complex pin’s geometries. The numerical processing is detailed and the efficiency of the proposed method is discussed on a Friction Stir Welding simulation of 7075 series aluminum alloy

    Similar works