Ti:sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP2

Abstract

We report on a femtosecond optical parametric oscillator (OPO) for the deep-infrared (deep-IR) based on the Kerr-lens-mode-locked Ti:sapphire laser as the pump source. By deploying a novel cascaded intracavity arrangement, comprising a femtosecond OPO based on the nonlinear crystal, CdSiP2CdSiP2, synchronously pumped internal to a MgO:PPLN femtosecond OPO, we have generated broadly tunable radiation across 5958–8117 nm using rapid static cavity delay tuning, with a maximum power of 64 μW at 6791 nm, limited by the absorption in mirror substrates as well as polarization-dependent intracavity losses. The deep-IR idler power exhibits excellent passive stability of better than 1.1% rms over 2 h, with a spectral bandwidth as large as ∼650  nm∼650  nm at ∼6800  nm∼6800  nm. The demonstrated concept is generic and can be similarly deployed in other operating time scales and wavelength regions, also using different laser pump sources and nonlinear materials.Peer Reviewe

    Similar works

    Full text

    thumbnail-image

    Available Versions