Nuclear physics has a long and productive history of application to
astrophysics which continues today. Advances in the accuracy and breadth of
astrophysical data and theory drive the need for better experimental and
theoretical understanding of the underlying nuclear physics. This paper will
review some of the scenarios where nuclear physics plays an important role,
including Big Bang Nucleosynthesis, neutrino production by our sun,
nucleosynthesis in novae, the creation of elements heavier than iron, and
neutron stars. Big-bang nucleosynthesis is concerned with the formation of
elements with A <= 7 in the early Universe; the primary nuclear physics inputs
required are few-nucleon reaction cross sections. The nucleosynthesis of
heavier elements involves a variety of proton-, alpha-, neutron-, and
photon-induced reactions, coupled with radioactive decay. The advent of
radioactive ion beam facilities has opened an important new avenue for studying
these processes, as many involve radioactive species. Nuclear physics also
plays an important role in neutron stars: both the nuclear equation of state
and cooling processes involving neutrino emission play a very important role.
Recent developments and also the interplay between nuclear physics and
astrophysics will be highlighted.Comment: To be published in the Proceedings of 19th Lake Louise Winter
Institute (15-21 February 2004). 9 pages, 3 figure