We present results based on XMM-Newton observations of a small sample of hot
galaxy clusters. Making a full use of XMM-Newton's spectro-imaging
capabilities, we have extracted the radial temperature profile and gas density
profile, and with this information, calculated the total mass profile of each
cluster (under the assumption of hydrostatic equilibrium and spherical
symmetry). Comparing the individual scaled total mass profiles, we have probed
the Universality of rich cluster mass profiles over a wide range of radii (from
0.01 to 0.7 the virial radius). We have also tested the shape of cluster mass
profiles by comparing with the predicted profiles from numerical simulations of
hierarchical structure formation. We also derived the local mass-temperature
(M-T) scaling relation over a range of temperature going from 4 to 9 keV, that
we compare with theoretical predictions.Comment: 7 pages, 2 figures, Advances in Space Research in press (proceedings
of the COSPAR 2004 Assembly, Paris