research

Team Theory and Person-by-Person Optimization with Binary Decisions.

Abstract

In this paper, we extend the notion of person-by-person (pbp) optimization to binary decision spaces. The novelty of our approach is the adaptation to a dynamic team context of notions borrowed from the pseudo-boolean optimization field as completely local-global or unimodal functions and submodularity. We also generalize the concept of pbp optimization to the case where groups of mm decisions makers make joint decisions sequentially, which we refer to as mmbmm optimization. The main contribution is a description of sufficient conditions, verifiable in polynomial time, under which a pbp or an mmbmm optimization algorithm converges to the team-optimum. As a second contribution, we present a local and greedy algorithm characterized by approximate decision strategies (i.e., strategies based on a local state vector) that return the same decisions as in the complete information framework (where strategies are based on full state vector). As a last contribution, we also show that there exists a subclass of submodular team problems, recognizable in polynomial time, for which the pbp optimization converges for at least an opportune initialization of the algorithm

    Similar works