Synthesis of mechanically strong waterborne poly(urethane-urea)s capable of self-healing at elevated temperatures

Abstract

Although various chemistries have been introduced into polyurethanes in order to obtain self-healing abilities, implementing these materials in applications requiring high strength is challenging as strong materials imply a limited molecular motion, but without movement of polymer chains self-healing is not possible. Here, waterborne poly(urethane-urea)s (PU(U)s) based on aromatic disulfide compounds are developed which balance these contradictory requirements by presenting good mechanical properties at room temperature, while showing the mobility necessary for healing when moderately heated. The influence of hard monomers on the stability and mobility of the materials is investigated by scratch closure, cut healing and rheological measurements, so that the limits of the readily available aromatic disulfide compounds, bis(4-aminophenyl)- and bis(4-hydroxyphenyl)disulfide, can be determined. Subsequently, a modified aromatic disulfide compound, bis[4-(3'-hydroxypropoxy)phenyl]disulfide, with increased reactivity, solubility and flexibility is synthesized and incorporated into the PU backbone, so that materials with more attractive mechanical properties, reaching ultimate tensile strengths up to 23 MPa, and self-healing abilities at elevated temperatures could be obtained.The European Union’s Horizon 2020 research and innovation programme is accredited for the financial support through Project TRACKWAY-ITN 642514 under the Marie Sklodowska-Curie grant agreement. N.B. acknowledges the financial support obtained through the Post-Doctoral fellowship Juan de la Cierva - Incorporación (IJCI-2016-28442), from the Ministry of Economy and Competitiveness of Spai

    Similar works

    Full text

    thumbnail-image

    Available Versions