Abstract

Gravitational coupling between Earth's core and mantle has been proposed as an explanation for a 6 year variation in the length-of-day (ΔLOD) signal and plays a key role in the possible superrotation of the inner core. Explaining the observations requires that the strength of the coupling, Γ, falls within fairly restrictive bounds; however, the value of Γ is highly uncertain because it depends on the distribution of mass anomalies in the mantle. We estimate Γ from a broad range of viscous mantle flow models with density anomalies inferred from seismic tomography. Requiring models to give a correlation larger than 70% to the surface geoid and match the dynamic core-mantle boundary ellipticity inferred from Earth's nutations, we find that 3 × 10(19)<Γ<2 × 10(20) N m, too small to explain the 6 year ΔLOD signal. This new constraint on Γ has important implications for core-mantle angular momentum transfer and on the preferred mode of inner core convection

    Similar works