Simulating of Biofuel Production from Rice Husks

Abstract

In the context of energy crisis and environmental damage due to rapid depletion and overuse of fossil fuel, alternative renewable energy resources such as biomass have been being significantly studied recently. In Southeast Asia countries like Malaysia, one of the abundant biomass feed stocks is rice husk which is a residue from rice production process. Rice husk can be transformed into gasoline through a series of fast pyrolysis and catalytic cracking processes. However, there is limited work on simulating the whole process. The objective of this project is to develop a mathematical simulation for the production of gasoline from rice husk using MATLAB. From the developed model, parametric studies have been conducted to identify the operating conditions which give the highest yield of product. The mathematic model was based on kinetic equations for the two main processes together with basic mass and energy balance for other subprocesses in the flowsheet. As a result, the model has shown that from 1000kg of rice husk, 191 liters of gasoline would be obtained. Within the studied range, the operating conditions at temperature of 783K and residence time of 5s for pyrolysis and at 723K in 1.25h for catalytic cracking are proposed to get the highest gasoline yield. The developed model can be considered as a basis for further research on simulating the production process of biofuel from rice husk

    Similar works