metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella
The metabolic SearcH And Reconstruction Kit
(metaSHARK) is a new fully automated software package
for the detection of enzyme-encoding genes
within unannotated genome data and their visualization
in the context of the surrounding metabolic network.
The gene detection package (SHARKhunt) runs
on a Linux systemand requires only a set of raw DNA
sequences (genomic, expressed sequence tag and/
or genome survey sequence) as input. Its output
may be uploaded to our web-based visualization
tool (SHARKview) for exploring and comparing data
from different organisms. We first demonstrate the
utility of the software by comparing its results for
the raw Plasmodium falciparum genome with the
manual annotations available at the PlasmoDB and
PlasmoCyc websites. We then apply SHARKhunt to
the unannotated genome sequences of the coccidian
parasite Eimeria tenella and observe that, at an
E-value cut-off of 10(-20), our software makes 142
additional assertions of enzymatic function compared
with a recent annotation package working
with translated open reading frame sequences. The
ability of the software to cope with low levels of
sequence coverage is investigated by analyzing
assemblies of the E.tenella genome at estimated
coverages from 0.5x to 7.5x. Lastly, as an example
of how metaSHARK can be used to evaluate the
genomic evidence for specific metabolic pathways,
we present a study of coenzyme A biosynthesis in
P.falciparum and E.tenella