Abstract

We have incorporated the latest release of the Padova models into the evolutionary synthesis code Starburst99. The Padova tracks were extended to include the full asymptotic giant branch (AGB) evolution until the final thermal pulse over the mass range 0.9 to 5 solar mass. With this addition, Starburst99 accounts for all stellar phases that contribute to the integrated light of a stellar population with arbitrary age from the extreme ultraviolet to the near-infrared. AGB stars are important for ages between 0.1 and 2 Gyr, with their contribution increasing at longer wavelengths. We investigate similarities and differences between the model predictions by the Geneva and the Padova tracks. The differences are particularly pronounced at ages > 1 Gyr, when incompleteness sets in for the Geneva models. We also perform detailed comparisons with the predictions of other major synthesis codes and found excellent agreement. Our synthesized optical colors are compared to observations of old, intermediate-age, and young populations. Excellent agreement is found for the old globular cluster system of NGC 5128 and for old and intermediate-age clusters in NGC 4038/39. In contrast, the models fail for red supergiant dominated populations with sub-solar abundances. This failure can be traced back to incorrect red supergiant parameters in the stellar evolutionary tracks. Our models and the synthesis code are publicly available as version 5.0 of Starburst99 at http://www.stsci.edu/science/starburst99/.Comment: The revised Starburst99 code discussed in this paper will replace the current version 4.0 on our Starburst99 website by December 31, 2004. Accepted for publication in ApJ; 39 pages, 23 figures, 5 table

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019