slides

Safety in numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation

Abstract

Observation of the expansion history of the Universe allows exploration of the physical properties and energy density of the Universe's various constituents. Standardizable candles such as Type Ia supernovae remain one of the most promising and robust tools in this endeavor, by allowing for a direct measure of the luminosity distance-redshift curve, and thereby producing detailed studies of the dark energy responsible for the Universe's currently accelerating expansion. As such observations are pushed to higher redshifts, the observed flux is increasingly affected by gravitational lensing magnification due to intervening structure along the line-of-sight. We simulate and analyze the non-Gaussian probability distribution function of de/amplification due to lensing of standard candles, quantify the effect of a convolution over many independent sources (which acts to restore the intrinsic average (unlensed) luminosity due to flux conservation), and compute the additional uncertainty due to lensing on derived cosmological parameters. For example, the ``degradation factor'' due to lensing is a factor of three reduction in the effective number of usable supernovae at z=1.5 (for sources with intrinsic flux dispersion of 10%). We also derive a useful expression for the effective increased dispersion in standard candles due to lensing, as a function of redshift.Comment: 11 pages, 10 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019