Machining Simulation of AISI 1045 and Carbide Tool Using FEM

Abstract

In recent years, the applications of finite element method (FEM) in metal cutting operations have proved to be effective in studying the cutting process and chip formation. In particular, the simulation results can be used for both researchers and machine tool makers to optimize the cutting process and designing new tools. Many researches were done on two-dimensional simulation of cutting process because the three-dimensional versions of FEM software required more computational time. The present work aims to simulate three-dimensional orthogonal cutting operations using FEM software of Deform-3D. Orthogonal cutting finite element model simulations were conducted to study the effect of cutting speed on effective-stress, strain and temperature in turning process. AISI 1045 was used as work material and cutting tool was TNMA 332 (uncoated carbide tool, SCEA = 0; BR = -5; SR = -5 and radius angle 60o). The emphasis on the designed geometries are limited to the changes in the cutting speed between 100 m/min and 450 m/min. The machining parameters of feed rate and depth of cut were kept constant at 0.35 mm/rev and 0.3 mm respectively. The simulation results show that by increasing the cutting speed causes a decrease in cutting force and effective-strain. On the other hand, increasing in cutting speed will increase effective -strain and temperature of the chip formed

    Similar works