The intense radiation from a gamma-ray burst (GRB) is shown to be capable of
melting stony material at distances up to 300 light years which subsequently
cool to form chondrules. These conditions were created in the laboratory for
the first time when millimeter sized pellets were placed in a vacuum chamber in
the white synchrotron beam at the European Synchrotron Radiation Facility
(ESRF). The pellets were rapidly heated in the X-ray and gamma-ray furnace to
above 1400 C melted and cooled. This process heats from the inside unlike
normal furnaces. The melted spherical samples were examined with a range of
techniques and found to have microstructural properties similar to the
chondrules that come from meteorites. This experiment demonstrates that GRBs
can melt precursor material to form chondrules that may subsequently influence
the formation of planets. This work extends the field of laboratory
astrophysics to include high power synchrotron sources.Comment: 8 pages, 10 figures. Proceedings of the 5th INTEGRAL Workshop, Munich
16-20 February 2004. High resolution figures available at
http://bermuda.ucd.ie/%7Esmcbreen/papers/duggan_01.pd