research

CASSIOPEIA II D3.2 - Final technical report

Abstract

The FlightPath 2050 presents Europe’s Vision for Aviation for the future. In what refers to air traffic management, this vision includes concrete goals for the punctuality of flights and capacity of the air traffic management system. Additionally, the document adds a concrete goal in what refers to passenger mobility, stating that 90% of the passengers should be able to travel door-to-door in Europe within 4 hours. Passenger mobility is obviously the ultimate goal of the air transport system, which mission is to transport passengers and freight, not airplanes. However, punctuality is currently mostly measured as aircraft operations performance. Moreover, most air traffic management technology improvements are targeting aircraft punctuality and not passenger punctuality. Passenger punctuality depends critically on passenger connectivity, as a missed connection impacts very negatively in passenger mobility performance. Increasing the predictability of air transport operations has limits. Not only meteorological conditions can affect the punctuality but also countless operational hazards impact the air traffic management system. Making the system adaptable to changes in the operational conditions, capable of re-configuring itself to accommodate to a new scenario seems a better approach than trying to make the system robust, which ultimately could be too expensive or impossible. Studying how different mechanisms improve the adaptability of the system is a complex problem. On one hand, it is a challenge to design a procedure that provides adaptability without impacting other performance metrics of the system. On the other hand, complex mechanisms usually require dedicated simulation frameworks, capable of modelling realistically a large number of parameters as well as providing a performance framework capable of evaluating in detail (e.g. beyond simple statistical properties) how the system adapts to the new conditions and how those mechanisms target a performance goal. The CASSIOPEIA DCI-4HD2D project extension studied how changing the trajectory of each aircraft to either minimise fuel consumption or to minimise time to destination can be used as a adaptability mechanism, to work together with other ATM improvements, to address passenger connectivity. Understanding how this mechanism, known as Dynamic Cost Indexing (DCI), increases the adaptability of the system, required the analysis, design and implementation of a complex software system as a collection of interacting, autonomous agents. This document reports on the cases of study selected and the analysis of the outcome of the simulations performed, assessing how DCI contributes to passenger connectivity and, ultimately, to passenger mobility improvement

    Similar works