research

Simulated impact trauma and osteoarthritis: the role of cell volume and mechanotransduction

Abstract

Health and emotional benefits are linked to participation in exercise, however single-impact load (e.g. trauma) and altered joint loading can cause bone fracture(s) resulting in permanent cartilage damage and increased risk of osteoarthritis (OA). This study investigated the role of single mechanical load and the effects of chondroprotective agents over short periods of time (2-30 min) post impact. Mechanical load (force 1.14 N) induced by a drop tower device caused cell death from as early as 2 min. Pre-incubation in hypertonic media protected chondrocytes from cell death, whereby at 30 min, death was decreased from 9.22 % to 3.42 % (p<0.01), thus implicating volume regulatory changes as a potential key mechanism for chondroprotection, with in situ chondrocytes altering their cell volume in response to hypertonicity by 20 %. Investigation of the cell cytoskeleton, showed that hypertonicity increased cortical actin by 29 % within the superficial zone (SZ) only (p<0.01). Volume and actin polymerisation regulation are governed by intracellular Ca2+ and the regulatory volume decrease (RVD) inhibitor REV5901 has been linked to both and was therefore tested for its potential chondroprotective properties. Impact led to cell death, which was significantly reduced by REV5901 from 10.92 % to 5.44 % (p<0.001) and initial cell volume was reduced by 25%. Cortical actin staining was increased by 20 % within the SZ of articular cartilage only (p<0.01). GdCl3 (blocker for stretch-activated calcium channels), uridine-5’-triphosphate (uridine; calcium mobilizing mediator) and the phosphoinositide 3-kinases (PI3K) inhibitor wortmannin were used to determine its mechanism of action. Wortmannin alone increased cell death and inhibited REV5901 chondroprotective effects with no alteration in cell volume compared to REV5901 alone. Whilst uridine reduced cell volume with 20 % (p<0.05) it did not reduce cell death significantly from 10.92 % to 8.10 % (p>0.05) compared to control. GdCl3 inhibited REV5901 chondroprotective effects by increasing cell death by ~ 5 % compared to control (p<0.05), F-actin staining appeared reduced 72.84 AU and not significantly different from control (p>0.05). The role of the cell cytoskeleton is important for cell mechanotransduction and for maintaining integrity as actin microfilaments are recognized to bear tension therefore, alterations of the actin-binding proteins responsible for actin treadmilling cofilin, profilin and gelsolin mRNA was compared to untreated chondrocytes. REV5901 was observed to reduce cofilin (known actin depolymerizing factor) with 30 % (p<0.05) and increase profilin significantly by 75 % (p<0.001) respectively. Western blot analysis showed that only cofilin and gelsolin were expressed in all samples with no detection of profilin. REV5901 was observed to significantly reduce cofilin by 28 % (p<0.05). This data highlights that REV5901 exhibits chondroprotective properties in part due to the polymerisation of the actin cytoskeleton via PI3Ks pathway. This could offer a novel therapeutic opportunity for perention of irreversible cartilagedamage following acute impact trauma

    Similar works