We present the radial velocity structure of the molecular hydrogen outflows
associated to the star forming region Cepheus A. This structure is derived from
doppler shift of the H_2 v=1-0 S(1) emission line obtained by Fabry-Perot
spectroscopy. The East and West regions of emission, called Cep A(E) and Cep
A(W), show radial velocities in the range -20 to 0 km/s with respect to the
molecular cloud. Cep A(W) shows an increasing velocity with position offset
from the core indicating the existence of a possible accelarating machanism.
Cep A(E) has an almost constant mean radial velocity of -18 km/s along the
region although with a large dispersion in velocity, indicating the possibility
of a turbulent outflow. A detailed analysis of the Cep A(E) region shows
evidence for the presence of a Mach disk on that outflow. Also, we argue that
the presence of a velocity gradient in Cep A(W) is indicative of a C-shock in
this region. Following Riera et al. (2003), we analyzed the data using wavelet
analysis to study the line width and the central radial velocity distributions.
We found that both outflows have complex spatial and velocity structures
characteristic of a turbulent flow.Comment: 24 pages, 15 figure