We discuss a few recent developments that are important for understanding of
MHD turbulence.
First, MHD turbulence is not so messy as it is usually believed. In fact, the
notion of strong non-linear coupling of compressible and incompressible motions
along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence
follow their own cascades and exhibit degrees of anisotropy consistent with
theoretical expectations. Second, the fast decay of turbulence is not related
to the compressibility of fluid. Rates of decay of compressible and
incompressible motions are very similar. Third, viscosity by neutrals does not
suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence
develops magnetic cascade at scales below the scale at which neutrals damp
ordinary hydrodynamic motions. Forth, density statistics does not exhibit the
universality that the velocity and magnetic field do. For instance, at small
Mach numbers the density is anisotropic, but it gets isotropic at high Mach
numbers. Fifth, the intermittency of magnetic field and velocity are different.
Both depend on whether the measurements are done in local system of reference
oriented along the local magnetic field or in the global system of reference
related to the mean magnetic field.Comment: 12 pages, Invited Review, Workshop on Theoretical Plasma Physics,
Trieste, Italy, 5-16 Jul