We present a deep XMM-Newton observation of the z=6.30 QSO SDSS J1030+0524,
the second most distant quasar currently known. The data contain sufficient
counts for spectral analysis, demonstrating the ability of XMM-Newton to
measure X-ray spectral shapes of z~6 QSOs with integration times >100ks. The
X-ray spectrum is well fit by a power law with index Gamma=2.12 +/- 0.11, an
optical-X-ray spectral slope of a_{ox}=-1.80, and no absorption excess to the
Galactic value, though our data are also consistent with a power law index in
the range 2.02 < Gamma < 2.5 and excess absorption in the range 0 < N_H(cm^-2)
< 8x10^22. There is also a possible detection (2 sigma) of FeKa emission. The
X-ray properties of this QSO are, overall, similar to those of lower-redshift
radio-quiet QSOs. This is consistent with the statement that the X-ray
properties of radio-quiet QSOs show no evolution over 0<z<6.3. Combined with
previous results, this QSO appears indistinguishable in any way from lower
redshift QSOs, indicating that QSOs comparable to those seen locally existed
less than one Gyr after the Big Bang.Comment: ApJ Letters, accepte